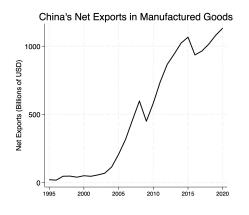
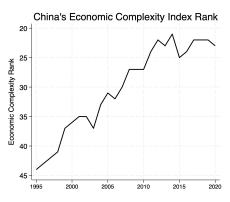
International Spillovers of China's High-Tech Industrial Policies: Evidence from Germany

Yuxuan Wu


The University of British Columbia, JMP


New Thinking in Industrial Policy Conference

November 5, 2025

Motivation: China's Export Boom and Rising Economic Complexity

- Trade liberalization and integration into the global market (e.g., ADH Annual Review 2016)
- Extensive use of industrial policy (Fang et al., 2025)→ Need to better understand its role

Note: Economic Complexity Index (ECI) from Hausmann and Hidalgo (2014)

Research Questions:

- What is the role of China's industrial policies (IPs) in driving exports and upgrading toward higher-value production?
- How do China's IPs affect related industries and workers in Germany? Figure
 - ► Global leader in high-tech manufacturing (ranked 2nd in Economic Complexity)
 - One of China's largest trading partners

This Paper:

- Studies China's IPs targeting high-tech manufacturing since 1999
 - Uses newly assembled data from policy documents
 - Exploits the staggered rollout of policies at the product level between 1996 and 2017
 - ▶ Leverages industry-level variations in exposure to IPs through input—output linkages

Preview of Results:

- Domestic impacts:
 - ► Expanded exports of IP-targeted products (+70%)
 - ▶ Increased imports of targeted final capital goods from Germany
- German upstream industries:
 - ▶ Benefited from a **positive demand shock**, exporting more to China
 - ► Experienced employment (+5%) and wage growth
- German downstream industries:
 - Increased imports from China
 - Showed no evidence of negative effects on overall employment or wages

Preview of Results:

- Domestic impacts:
 - Expanded exports of IP-targeted products (+70%)
 - ▶ Increased imports of targeted final capital goods from Germany
- German upstream industries:
 - Benefited from a positive demand shock, exporting more to China
 - ► Experienced employment (+5%) and wage growth
- German downstream industries:
 - Increased imports from China
 - ▶ Showed no evidence of negative effects on overall employment or wages

Contributions:

- Explains China's "unusual" early move into high-tech exports at its income level
- Demonstrates how domestic IP generate cross-border effects via input-output linkages

Policy

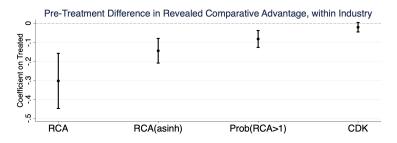
Guidance for Current Priorities in Key High-Tech Industrialization

- Issued by the central government in 1999, revised in 2001, 2004, 2007, and 2011.
- Aimed to guide resource allocation and promote technological upgrading
- Defined national prioritied industries: ICT, Machinery, Biotechnology, Aerospace, Clean
 Energy, New Materials, and High-Tech Transportation
- Implementation: adopted by provinces through tax incentives, subsidies, and
 land-access policies (27 of 34 provinces issued related measures)
- Within each priority sector, the *Guidance* identifies products with:
 - Strong market potential and strategic importance
 - Achievable short- to medium-term development goals

Example: Machine Tools Manufacturing

"Current priorities include developing open-architecture CNC systems and automatic modeling technology, integrating CAD/CAM/CAE software, and achieving large-scale production of high-precision CNC machine tools, multi-axis CNC machines, and flexible CNC production lines . . . "

Compare treated and control within industry:


Computer Numerical Control (CNC) vs Traditional Machine Tools

IP-Targeted Products	Control Products	
High-Precision CNC Machine Tools	Traditional Lathes, Drilling & Milling	
Flexible CNC Production Lines	Woodworking Machinery	
Semiconductor Chip Welding Equip.	Grinding & Polishing Machines	
Laser Processing & 3D Printers	Bending & Shearing Machines	
34 treated products (6-digit HS)	58 control products (6-digit HS)	

Main Data

Treatment at product level

- 1,136 product names from the Guidance mapped to 368 tradable products (6-digit HS)
- ▶ 228 products (62%) were treated in the first two waves (1999, 2001)
- ▶ Most are final capital goods (40%) and processed industrial suppliers (29%)
- Policies primarily targeted products with initial comparative disadvantage, consistent with infant-industry protection motive

Main Data

German industry-level outcomes

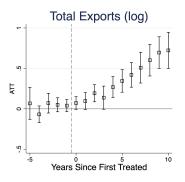
- ▶ 2% sample of German administrative worker data 1993-2017 (SIAB)
 - * Report average daily wage, industry of establishment, and occupation
- Covers 61 manufacturing industries after harmonizing with the input-output table

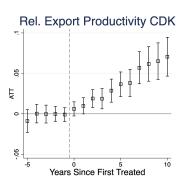
Number of granted patents

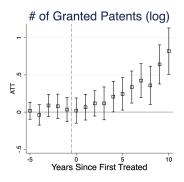
- OECD Triadic Patent Database (EPO PATSTAT)
 - ★ Contains high-quality patents filed in all three offices: USPTO, EPO, and JPO
 - ★ Includes granted patents filed by Chinese firms or inventors

Annual trade flows

▶ BACI-CEPII dataset 1996-2017


Empirical Specification

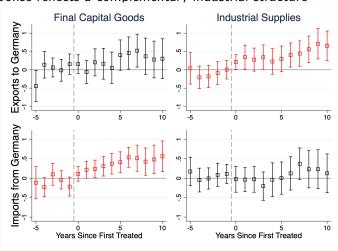

$$y_{p,t} = \sum_{k} \beta_k \times \mathbf{1}\{t - G_p = k\} + \alpha_p + \alpha_{j(p),t} + \epsilon_{pt}$$


- p: product; j(p): industry of product p
- $G_p = \{1999, 2001, 2004, 2007, 2011\}$: year in which product p was first treated
- Controls: 3-digit industry-by-year fixed effects
- Estimator: Callaway and Sant'Anna (2021) DiD, using never-treated products as controls
- Outcomes:
 - ► Total exports, number of granted patents, and relative export productivity (CDK) (Costinot, Donaldson, Komunjer (2012))
 - Bilateral trade with Germany, subsampled into final capital goods and processed industrial supplies

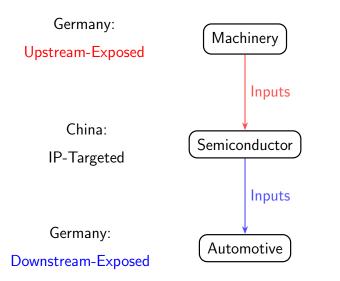
China: Export Competitiveness and Innovation Gains

- Treated products experienced a 70% increase in exports relative to controls by year nine
- Showed improvement in CDK, and a 50% increase in granted patents
- Exhibited gains in unit values and were exported to higher-income destinations Quality

China: Increased Dependence on German Capital Goods Other Goods



- Treated capital goods remain difficult to substitute domestically, even with IPs support
- ⇒ Asymmetric trade response reflects a complementary industrial structure


China's Exports to Germany

China's **Imports** from Germany

From Product Targeted to Industry Exposure: Channels

• Effects of IPs propagate to upstream suppliers and to downstream buyers

From Products to Industry: Exposure Measurement

Upstream (Supplier) Exposure of industry j:

$$\mathsf{Upstream} \ \mathsf{Exposure}_j = \sum_i \mathit{OutputShare}_{j \rightarrow i} \times \mathit{TreatedShare}_i$$

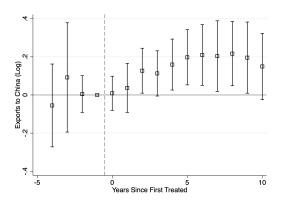
⇒ Captures how intensively industry j's customers are targeted by IPs

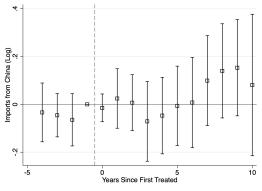
Downstream (Buyer) Exposure of industry *j*:

$$\mathsf{Downstream} \ \mathsf{Exposure}_j = \sum_i \mathit{InputShare}_{i \rightarrow j} \times \mathit{TreatedShare}_i$$

⇒ Captures how intensively industry j's suppliers are targeted by IPs

Notes: TreatShare; is computed as the 1996–1998 average share of products targeted by IPs, based on China's exports to the rest of the world (excluding Germany).

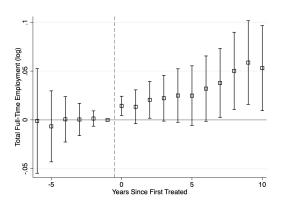

Industry Level Specification

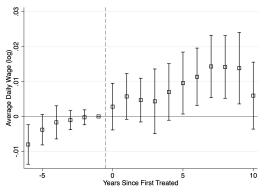

$$\begin{aligned} y_{jt} = & \alpha_j + \alpha_t + \sum_{k \neq 1998} \beta^k (\mathsf{Upstream \; Exposure}_j \times \mathsf{Year}_t^k) \\ & + \sum_{k \neq 1998} \gamma^k (\mathsf{Downstream \; Exposure}_j \times \mathsf{Year}_t^k) + \sum_{k \neq 1998} (\Omega_j \times \mathsf{Year}_t^k) + \epsilon_{jt} \end{aligned}$$

- β^k, γ^k : Effect of 1 s.d. increase in exposure on outcomes relative to 1998
- y_{jt} : Industry-level outcomes (1993–2009)
 - Bilateral trade with China
 - Full-time employment; average daily wage
 - Share of production workers; share of engineers
- Ω_j : pre-treatment characteristics including average share of university-educated, female, and German workers, changes in the industry's share of total employment over 1987-1992

Upstream Suppliers: Exported More to China

- \bullet One s.d. increase in upstream exposure \Rightarrow 20% higher exports to China
- Reflects a **positive demand shock** from China's IPs

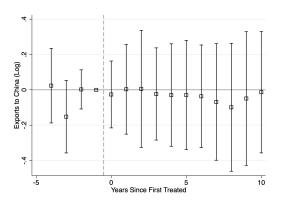


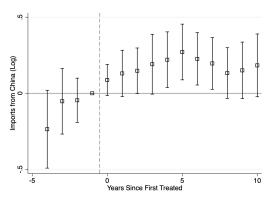

(a) Germany's Exports to China

(b) Germany's Imports from China

Upstream Suppliers: Gains in Employment and Wage Occ Composition

- ullet + 1 s.d. upstream exposure \Rightarrow 5% higher full-time employment and 1.5% higher wage
- More production workers and more young worker entering these industries Entrants

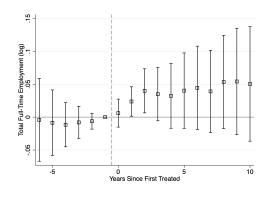



(a) Full-time Employment (Log)

(b) Average Daily Wage (Log)

Downstream Buyers: Imported More from China

ullet + 1 s.d. downstream exposure ightarrow 20% increase in imports from China

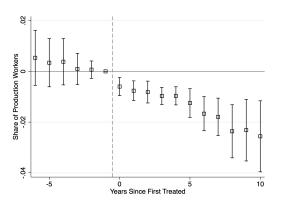


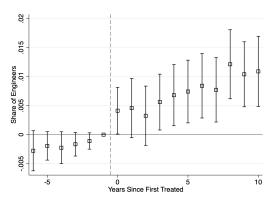
(a) German Exports to China

(b) German Imports from China

Downstream Buyers: Mild Gains in Employment and Wage

- Import competition would harm workers if it was replacing domestic production
- Possibility: Cheaper imported inputs raised labor demand




(a) Full-time Employment (Log)

(b) Average Daily Wage (Log)

Downstream Buyers: Within-Industry Compositional Shift

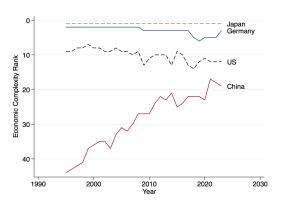
• + 1 s.d. downstream exposure \Rightarrow + 1 pp increase (+20.8%) in the share of engineers, and + 2 pp decline (-2.9%) in the share of production workers.

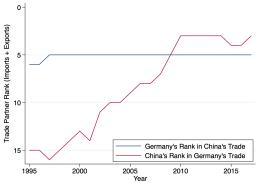
(a) Share of Production Workers

(b) Share of Engineers

Conclusion

- China's industrial policies promoted exports of targeted high-tech products
- IP also had cross-border effects through global input-output linkages
 - ► German upstream suppliers benefited from a positive demand shock
 - German downstream buyers adjusted workforce composition
- Countries may benefit from foreign IPs in the short run
 - But gains depend on having key technologies or products that are hard to substitute
 - Implies potential distributional effects across countries


Thank you!


•

wuyx42@student.ubc.ca

Germany: manufacturing powerhouse and key trade partner of China [Back]

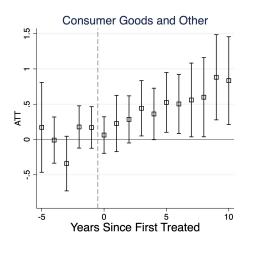
• Germany's Exports account for around 30%-40% of GDP during the 2000s.

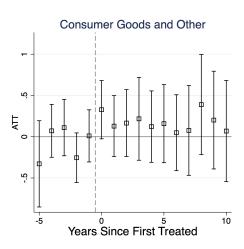
(a) Rank 2nd in Economic Complexity Index

(b) China's 5th Largest Trade Partner

Note: ECI was developed by Hausmann and Hidalgo using global trade data.

Export Competitiveness Improvement and Quality Upgrading

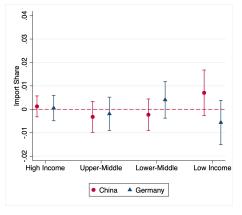

• Effects on CDK and RCA are similar to Lane (QJE 2025) for Korea's IP on HCI

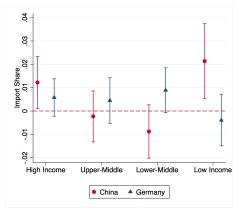

Table 1: Treatment Effect on Export Performance and Quality for China's Exports

	Competitiveness		Technological or Quality Upgrading		
	(1)	(2)	(3)	(4)	(5)
	RCA(CDK)	RCA(Balassa)	Patents(log)	Unit Price(log)	Destination GDPpc ¹
Post (0 to 4)	0.016***	0.058**	0.105	0.070*	95.018
	(0.00)	(0.03)	(0.07)	(0.04)	(329.88)
Post (5 to 9)	0.051***	0.184***	0.400***	0.106**	975.486**
	(0.01)	(0.06)	(0.10)	(0.05)	(427.54)
Pre (-5 to -1)	-0.001	-0.009	0.036**	0.001	-73.806
	(0.00)	(0.01)	(0.02)	(0.02)	(122.51)
Ind×Year FE	Y	Y	Y	Y	Υ

¹ Destination GDP pp: export-weighted average GDP pc among all destinations

China-Germany Trade: Other Products (Back)

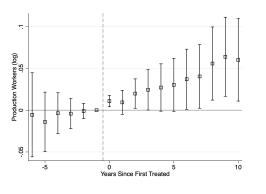


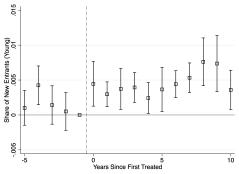

(a) CN to DE

(b) DE to CN

China's Export Growth Without Germany's Loss Back

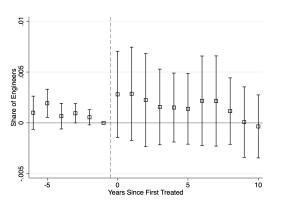
 Dependent variable: import share of Chinese products or German products in each country group

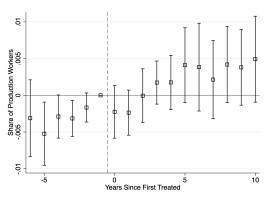

(a) ATT between 0-4 years


(b) ATT between 5-9 years

Upstream Suppliers: More Production Workers and Young Entrants

 Expansion in upstream-exposed industries is driven by growth in production workers and young entrants (under 30)





(a) Production Workers (log)

(b) Share of New Entrants

Upstream Suppliers: Stable Occupational Composition (Back)

(a) Share of Engineers

(b) Share of Production Workers